Abstract

Cellular transition to hypoxia following tissue injury, has been shown to improve angiogenesis and regeneration in multiple tissues. To take advantage of this, many hypoxia-mimicking scaffolds have been prepared, yet the oxygen access state of implanted artificial small-diameter vascular grafts (SDVGs) has not been investigated. Therefore, the oxygen access state of electrospun PCL grafts implanted into rat abdominal arteries was assessed. The regions proximal to the lumen and abluminal surfaces of the graft walls were normoxic and only the interior of the graft walls was hypoxic. In light of this differential oxygen access state of the implanted grafts and the critical role of vascular regeneration on SDVG implantation success, we investigated whether modification of SDVGs with HIF-1α stabilizer dimethyloxalylglycine (DMOG) could achieve hypoxia-mimicking responses resulting in improving vascular regeneration throughout the entirety of the graft wall. Therefore, DMOG-loaded PCL grafts were fabricated by electrospinning, to support the sustained release of DMOG over two weeks. In vitro experiments indicated that DMOG-loaded PCL mats had significant biological advantages, including: promotion of human umbilical vein endothelial cells (HUVECs) proliferation, migration and production of pro-angiogenic factors; and the stimulation of M2 macrophage polarization, which in-turn promoted macrophage regulation of HUVECs migration and smooth muscle cells (SMCs) contractile phenotype. These beneficial effects were downstream of HIF-1α stabilization in HUVECs and macrophages in normoxic conditions. Our results indicated that DMOG-loaded PCL grafts improved endothelialization, contractile SMCs regeneration, vascularization and modulated the inflammatory reaction of grafts in abdominal artery replacement models, thus promoting vascular regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.