Abstract

BackgroundIncreasing evidence has linked the thyroid dysfunction to the pathogenesis of dementia. Evidence from clinical studies has demonstrated that hypothyroidism is related to an increased risk of dementia. But the association of hyperthyroidism with dementia is largely unknown.MethodsWe used the adenovirus containing thyrotropin receptor (TSHR) amino acid residues 1-289 (Ad-TSHR289)-induced Graves’ disease (GD) phenotype in Alzheimer’s disease (AD) model mice (APP/PS1 mice) to evaluate the effect of hyperthyroidism on the cognitive function and β-amyloid (Aβ) accumulation.ResultsGD mice exhibited a stable long-term hyperthyroidism and cognitive deficits. Single Cell RNA-sequencing analysis indicated that microglia function played a critical role in the pathophysiological processes in GD mice. Neuroinflammation and polarization of microglia (M1/M2 phenotype) and activated receptor-interacting serine/threonine protein kinase 3 (RIPK3)/mixed lineage kinase domain–like pseudo-kinase (MLKL)-mediated necroptosis contributed to the pathological process, including Aβ deposition and neuronal loss. RIPK3 inhibitor could inhibit GD-mediated Aβ accumulation and neuronal loss.ConclusionsOur findings reveal that GD hyperthyroidism aggravates cognitive deficits in AD mice and induces Aβ deposition and neuronal loss by inducing neuroinflammation and RIPK3/MLKL-mediated necroptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.