Abstract
Ten groups of mice were exposed to either a single (30 Gy) or multiple (six fractions of 6 Gy) X-ray doses to the leg. Eight of these groups had the irradiated leg made hyperthermic for 45 min immediately following the X irradiation to temperatures of 37 to 43 degrees C. Eight control groups had their legs made hyperthermic with a single exposure or six exposures to heat as the only treatment. In mice exposed to radiation only, the postexposure subcutaneous temperature was 36.0 +/- 1.1 degrees C. Hyperthermia alone was not carcinogenic. At none of the hyperthermic temperatures was the incidence of tumors in the treated leg different from that induced by X rays alone. The incidence of tumors developing in anatomic sites other than the treated leg was decreased in mice where the leg was exposed to hyperthermia compared to mice where the leg was irradiated. A systemic effect of local hyperthermia is suggested to account for this observation. In mice given single X-ray doses and hyperthermia, temperatures of 37, 39, or 41 degrees C did not influence radiation damage as measured by the acute skin reactions. A hyperthermic temperature of 43 degrees C potentiated the acute radiation reaction (thermal enhancement factor 1.1). In the group subjected to hyperthermic temperatures of 37 or 39 degrees C and X rays given in six fractions, the skin reaction was no different from that of the group receiving X rays alone. Hyperthermic temperatures of 41 and 43 degrees C resulted in a thermal enhancement of 1.16 and 1.36 for the acute skin reactions. From Day 50 to Day 600 after treatment, the skin reactions showed regular fluctuations with a 150-day periodicity. Following a fractionated schedule of combined hyperthermia and X rays, late damage to the leg was less than that following X irradiation alone. Mice subjected to X rays and hyperthermic temperatures of 41 and 43 degrees C had a lower median survival time than the mice treated with hyperthermia alone. This effect was not associated with tumor incidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.