Abstract

A key attribute for nanoparticles (NPs) that are used in medicine is the ability to avoid rapid uptake by phagocytic cells in the liver and other tissues. Poly(ethylene glycol) (PEG) coatings has been the gold standard in this regard for several decades. Here, we examined hyperbranched polyglycerols (HPG) as an alternate coating on NPs. In earlier work, HPG was modified with amines and subsequently conjugated to poly(lactic acid) (PLA), but that approach compromised the ability of HPG to resist non-specific adsorption of biomolecules. Instead, we synthesized a copolymer of PLA–HPG by a one-step esterification. NPs were produced from a single emulsion using PLA–HPG: fluorescent dye or the anti-tumor agent camptothecin (CPT) were encapsulated at high efficiency in the NPs. PLA–HPG NPs were quantitatively compared to PLA–PEG NPs, produced using approaches that have been extensively optimized for drug delivery in humans. Despite being similar in size, drug release profile and in vitro cytotoxicity, the PLA–HPG NPs showed significantly longer blood circulation and significantly less liver accumulation than PLA–PEG. CPT-loaded PLA–HPG NPs showed higher stability in suspension and better therapeutic effectiveness against tumors in vivo than CPT-loaded PLA–PEG NPs. Our results suggest that HPG is superior to PEG as a surface coating for NPs in drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.