Abstract

Comprehension assesses a listener’s ability to construe the meaning of an acoustic signal in order to be able to answer questions about its contents, while intelligibility indicates the extent to which a listener can precisely retrieve the acoustic signal. Previous comprehension studies asking listeners for sentence-level information or narrative-level information used native listeners as participants. This is the first study to look at whether clear speech properties (e.g. expanded vowel space) produce a clear speech benefit at the word level for L2 learners for speech produced in naturalistic settings. This study explored whether hyperarticulated speech was more comprehensible than non-hyperarticulated speech for both L1 British English speakers and early and late L2 British English learners in quiet and in noise. Sixteen British English listeners, 16 native Mandarin Chinese listeners as early learners of L2 and 16 native Mandarin Chinese listeners as late learners of L2 rated hyperarticulated samples versus non-hyperarticulated samples in form of words for comprehension under four listening conditions of varying white noise level (quiet or SNR levels of + 16 dB, + 12 dB or + 8 dB) (3 × 2× 4 mixed design). Mean ratings showed all three groups found hyperarticulated speech samples easier to understand than non-hyperarticulated speech at all listening conditions. Results are discussed in terms of other findings (Uther et al., 2012) that suggest that hyperarticulation may generally improve speech processing for all language groups.

Highlights

  • In noiseless environments, speakers of a second language (L2) perform like native speakers in speech perception tasks (e.g. Nábělek & Donahue, 1984)

  • A comparison between the foreign-sounding conditions and the native-sounding conditions revealed that the vowel space was significantly larger for the foreign-sounding conditions than the native-sounding conditions

  • Pairwise comparisons showed that while speech in silence was easier to understand than at + 16 dB SNR (t (47) = 10.545, p < 0.0083, r = 0.797), at + 12 dB SNR (t (47) = 10.677, p < 0.0083, r = 0.734), and at + 8 dB SNR (t (47) = 11.427, p < 0.0083, r = 0.678), speech at + 16 dB SNR was easier to understand than at + 12 dB SNR (t (47) = 7.019, p < 0.0083, r = 0.981) and + 8 dB SNR (t (47) = 9.886, p < 0.0083, r = 0.958), while speech at + 12 dB SNR was easier to understand than at + 8 dB SNR (t (47) = 8.287, p < 0.0083, r = 0.981). These results show that speech under quiet conditions or in low noise levels is easier to understand than speech in higher noise levels across groups

Read more

Summary

Introduction

Speakers of a second language (L2) perform like native speakers in speech perception tasks (e.g. Nábělek & Donahue, 1984). Research by Florentine (1985b) revealed that exposure to L2 from infancy onwards, rather than only after puberty, helped L2 listeners to perform as well as L1 speakers on speech perception tasks in the presence of increasing noise. These data are interpreted as indicating a sensitive period after which learning a second language negatively affects L2 listeners’ perception of L2 in noise (Florentine, 1985b). It was shown that in speech perception tasks with noise, early learners of L2 performed better and benefitted more from sentence-level contextual information compared to late but very proficient L2 learners, indicating that late L2 listeners will have difficulty perceiving L2 in noise even with extensive exposure

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call