Abstract

The effect of types of CNTs (pristine and hydroxylated) on the synthesis of Chitosan-CNT (CS-CNT) composites was investigated theoretically. The adsorption energy (Eads) of CS on the pristine CNT and hydroxylated CNTs (CNT-OHn, n=1–6) as well as the structural and electronic properties of said composites have been investigated. Results show that the adsorption of CS on CNT and CNT-OHn is thermodynamically favored. The Eads of CS on CNTs was calculated to be −20.387kcal/mol from electrostatic interactions. For CS adsorbed into CNT-OHn, Eads ranges from −20.612 to −37.567kcal/mol. Hydroxyl groups on CNT are the main adsorption sites for CS loading onto CNT-OHn via hydrogen-bond interactions. The CS-CNT-OH3 is the most sable composite among tested complexes. The energy gap (ΔEgap) of CS-CNT-OH3 was calculated less than pristine CNT and CNT-OH3, indicative of the composites being more reactive than that of pristine CNTs and CNT-OH3. It was proved that CS can transfer electron to the hydroxylated CNTs, thus overcoming the drawbacks of CNTs being chemically inert.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.