Abstract

Polyvinyl alcohol/cellulose nanocrystals (CNC) and hydroxyapatite (HA) (PCH) were combined using an in situ method to fabricate porous scaffolds. CNC was extracted from sugarcane bagasse and the effect of HA on PVA/CNC composites was varied with 0, 0.5, 1 and 3 wt%. The scanning electron microscopy images of the PCH composites showed interior pores with pore channels, while the energy dispersive spectroscopy (EDS) results confirmed the increased HA content in the nanocomposite with a Ca/P ratio of 1.67. Porosity and the equilibrium swelling ratio were slightly affected by the HA content. The Fourier transform infrared spectra supported the EDS results by identifying significant peaks belonging to the HA curves of the PCH composites. The crystallinity revealed decreased crystal regions at higher HA content, whereas the mechanical behavior showed the improvement at 0.5 wt% of HA. Cytotoxicity with L929 demonstrated the compatibility of the PCH composites, with 85 ± 0.92% cell viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call