Abstract
To favor bone reconstitution with biomaterials endothelial cells should maintain proper functions to drive angiogenesis. To this aim nanocrystals of hydroxyapatite (HA) have been synthesized and characterized on endothelial cells. Microvascular endothelial cells have been exposed to stoichiometric HA nanocrystals. Cell morphology and organization of cytoskeletal proteins have been monitored by SEM analysis and immunofluorescence. Biochemical markers of physiological and pathological responses of endothelial cells, endothelial constitutive nitric oxide synthase, and cycloxygenase-2 (ecNOS and COX-2, respectively) have been measured by immunofluorescence. Crystallized HA sustained endothelial survival without any cytotoxic effect. At the observation with SEM, endothelial cell morphology was maintained in the presence of HA. The localization and organization of beta-actin documented the formation of stress fibers, indicating an activation of endothelial cells induced by HA nanocrystals. Immunohistochemistry for biochemical key signaling pathways in endothelium demonstrated that nanocrystals of HA maintained the expression of ecNOS and did not increase COX-2 expression. In conclusion, the present findings indicate that HA nanocrystals exhibit high biocompatibility for microvascular endothelium. In the presence of HA nanocrystals endothelial cells maintain biochemical markers of healthy endothelium. They do not acquire a proinflammatory or thrombogenic phenotype, but express markers of functioning endothelium that might contribute to angiogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.