Abstract

AbstractWith the potential of achieving high efficiency and low production costs, perovskite solar cells (PSCs) have attracted great attention. However, their unstableness under moist condition has retarded the commercial development. Recently, 2D perovskites have received a lot of attention due to their high moisture resistance. In this work, four quasi 2D quasi perovskites are prepared, then their stability under moist condition is investigated. The surface morphology, crystal structure, optical properties, and photovoltaic performance are measured. Among the four quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the best performance: uniform and dense film, extremely well‐oriented crystal structure, strong absorption, and a high power conversion efficiency (PCE) of 17.40%. The aging tests show that quasi‐2D perovskites are more stable under moist conditions than FAPbI3 is. The (C6H5CH2NH3)2(FA)8Pb9I28 quasi‐2D perovskite devices exhibit high humidity stability, maintaining 80% of the starting PCE after 500 h under 80% relative humidity. Compared with other quasi‐2D perovskites, (C6H5CH2NH3)2(FA)8Pb9I28 has the highest humidity stability, due to their strongest hydrophobicity from C6H5CH2NH3+. This work demonstrates that the properties of perovskite materials can be modified by adding different ammonium salts into FAPbI3. Thus, by introducing ammonium salts with high hydrophobic properties the fabrication of highly efficient and stable 2D PSCs may be possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.