Abstract

It has been demonstrated that hydrogen adsorption has an effect on the electronic structure of gold nanoparticles. The physicochemical properties of separate gold nanoparticles have been studied under an ultrahigh vacuum scanning tunneling microscope. The structure and electronic structure of gold–hydrogen clusters were modeled by the quantum-chemical density functional theory method. Hydrogen adsorption onto gold nanoparticles 4–5 nm is size at room temperature was experimentally revealed, and the lower limit of 1.7 eV for the Au–H bond energy was determined. The interaction of hydrogen with gold leads to a considerable rearrangement of the electronic subsystem of nanoparticles. The experimentally observed effects were supported by quantum-chemical calculations. The rearrangement mechanism is related to strong correlations in the electronic subsystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call