Abstract

The effects of hydrochloric acid (HCL) modification of the surface area, morphology and physico-chemical properties of Sayong kaolinite clay was investigated in this study. Sayong kaolinite clay was refluxed with different concentration of HCL (1M, 5M and 10M) at 100 °C for 4 hours and followed by calcination at 500 °C at 1 hour. The samples of untreated and treated clay were characterized by different analytical equipment such as BET Surface Area Analyzer, X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA) and Field Emission Scanning Electron Microscopy (FESEM). The acid treatment increased the surface area of the Sayong kaolinite clay almost three times from 24.46 m2/g to the maximum value which is 64.04 m2/g once treated with 5M HCL. The increasing of the surface area is due to the formation of amorphous silica phase and removal of the octahedral Al3+cations and other impurities (such as Mg2+, K+, Ca+etc.) when the acid strength is increasing as reported in XRF analysis. FTIR study shows the change of the peak intensity of several types of structural OH groups that presently in the untreated and acid treated samples. TGA-DTA profiles shows that acid treatment increased the amount of physisorbed water as the acid concentration is increased. There are three of endothermic peaks was observed in the untreated sample which centered at 49 °C, 275 °C and 520 °C. However, when the clay samples treated with acid, it has increased the physisorbed water and decreased the structural and coordinated water which caused the change in the endothermic curves in the treated sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.