Abstract

To study the benefit of ~ 50-µm-thick air-plasma-sprayed (APS) ‘flash’ bond coatings, NiCoCrAlYHfSi high-velocity oxygen fuel (HVOF) bond coatings were deposited on alloy 247 disk substrates with APS yttria-stabilized zirconia topcoatings. Using 1-h cycles at 1100 °C in air with 10% H2O and HVOF-only bond coatings as a baseline, APS flash coatings extended the average coating lifetime by > 10% using NiCoCrAlYHfSi and > 70% using NiCoCrAlY powder. Coatings were characterized after 0, 100 and 300 cycles and after failure. Residual stress in the thermally grown alumina scale was mapped every 100 cycles using photo-stimulated luminescence piezospectroscopy. The flash coating created an interlocked metal–alumina layer that appeared to inhibit critical crack formation, and the underlying HVOF layer prevented further internal oxidation and appeared to supply the APS flash coating with Al. The addition of Hf and Y to the flash coating increased internal oxidation and accelerated Al consumption, thereby reducing the benefit of the flash coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call