Abstract

Acoustic energy harvester is a device that converts sound or acoustic energy into electrical energy. Generally, the main components of this instrument are an acoustic transducer and an acoustic resonator. In this study, the transducer used was a 4-inch woofer loudspeaker, without acoustic resonator but equipped with a cylindrical housing with a fixed cross-sectional area and a length that can be varied from 6 cm until 25 cm by using a piston. Experimental results for various housing volumes showed a similar pattern of the dependence of the generated electric power on the incoming sound frequencies. In addition, it was found that (within the range of the volume variations) the output electric power increased significantly when the volume of the housing was increased. The highest root-mean-square (rms) electric power obtained was 1.72 mW resulting from sound with a sound pressure level (SPL) of 105 dB and a frequency of 84 Hz and by using a length of the housing cylinder of 25 cm (housing volume of 3243.7 cm<sup>3</sup>)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.