Abstract

AimsInsulin action is intertwined with changing levels of glucose and counter-regulatory hormone glucagon. While insulin lowers blood sugar level, glucagon raises it by promoting the breakdown of the stored glycogen in liver and releases glucose into the bloodstream. The hormones insulin and glucagon are key in the pathogenesis of type 2 diabetes (T2D). Insulin resistance is a primary predisposing factor for diabetes. Phosphorylation of insulin signaling molecules is altered in the insulin-resistant state. However, ubiquitin (Ub) modifications in insulin-resistant state are relatively understudied. To dissect the underlying mechanisms, we performed a proteomics study on hepatoma cells to study the regulation of ubiquitination by insulin and glucagon. Materials and methodsWe performed western blotting, immunoprecipitations, and affinity pull down using tandem Ub binding entities (TUBE) reagents on hepatoma cells treated with insulin or glucagon. Next, we performed MS/MS analysis on Ub-linkage specific affinity pull down samples. Gene ontology analysis and protein-protein interaction network analysis was performed using DAVID GO and STRING db, respectively. Key findingsThe ubiquitination pattern of total Ub, K48-linked Ub, and K63-linked Ub was altered with the treatment of hormones insulin and glucagon. Ubiquitination in immunoprecipitated samples showed enrichment with total Ub and K48-linked Ub but not with K63-linked Ub. Ubiquitination by treatment with hormones mainly enriched key signaling pathways MAPK, Akt, oxidative stress etc. SignificanceOur study identified key altered proteins and signal transduction pathways which aids in understanding the mechanisms of hormonal action on ubiquitination and identify new therapeutic targets for T2D.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call