Abstract
Abstract Fully dense few-layer graphene (FG)/Al 2 O 3 nanocomposites with homogeneously dispersed FG in matrix are prepared by using a heteroaggregation method followed by spark plasma sintering. It is found that the two dimensional FG has great ability to restrain grain growth in comparison to other inclusions. In addition, the morphology of grain in composite is modified by the addition of FG during densification process compared with monolithic alumina. Thanks to the greatly decreased grain size, the composites are almost as hard as monolithic alumina at low sintering temperature (1573 K) even if graphene content is as high as 1.2 vol.%. However, at higher sintering temperature (1673 K), the hardness of composites decreases further but the change in elastic modulus is very limited. The decline of hardness and elastic modulus mainly arises from the sliding feature of FG, low modulus of reduced graphene oxide in both in-plane and out-of-plane directions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.