Abstract

The process required to sinter porous Co-Cr-Mo alloys results in the formation of substrate porosity through carbide dissolution. Since hot isostatic pressing (HIPing) has been shown to eliminate casting porosity in the Co-Cr-Mo alloy, it is possible that it may be equally effective on pores that are generated from the sintering operation. The effect that HIPing a porous-coated Co-Cr-Mo material has on the fatigue and tensile properties was investigated. Fatigue testing was performed on sintered materials as well as sintered and HIPed materials, both with and without a porous coating. Further, the effect of varying coating thickness on the resulting fatigue strength of sintered and HIPed materials was studied. Light microscopy was performed in order to define the microstructural changes brought about by the various thermal cycles. Scanning electron microscopy was utilized to define the crack initiation process. The fatigue strength of uncoated "as sintered" materials was found to be reduced by 34% relative to the "as cast" condition. The same material that was HIPed revealed a fatigue strength slightly lower than the "as cast" condition. It was found that porous coatings created preferential sites for fatigue crack initiation. However, the presence of the coating did not further reduce the fatigue strength of "as sintered" materials because of the already low strength created by the sintering operation. Materials that were sintered exhibited a lowering in both tensile strength and elongation to failure relative to the "as cast" condition. The HIPing of sintered materials improved both fatigue and tensile properties relative to the "as sintered" condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.