Abstract
Background:Children with cerebral palsy (CP) present with a pathological gait pattern due to musculoskeletal impairments, such as muscle weakness and altered bony geometry. However, the effect of these impairments on gait performance is still unknown.Research aim:This study aimed to explore the effect of hip muscle weakness and femoral deformities on the gait performance of CP and typical developing (TD) subjects.Methods:6400 musculoskeletal models were created by weakening the hip extensors, abductors, adductors and flexors from 0% to 75 % and increasing the femoral anteversion angle (FAA) and neck shaft angle (NSA) from 20° to 60° and 120° to 160°, respectively. One TD and five CP gait patterns were imposed to each model and muscle forces were calculated. The effect of weakness and bony deformities on the capability gap (CG) at the hip, i.e. the lack in hip moment generating capacity to perform the gait pattern, was investigated using regression analysis.Results:The CG of apparent equinus, stiff knee gait, TD gait, jump gait and true equinus increased with 0.080, 0.038, 0.015, 0.023 and 0.005 Nm/kg per 10 percent hip abductor weakness increase, with 0.211, 0.130, 0.056, 0.045 and 0.011 Nm/kg per 10 degrees FAA increase and with 0.163, 0.080, 0.036, 0.043 and 0.011 Nm/kg per 10 degrees NSA increase, respectively. Combined weakness and bony deformities explained 96 %, 85 %, 82 %, 65 %, 40 % and 35 % of the variance in the CG of apparent equinus, TD gait, stiff knee gait, jump gait, true equinus and crouch gait, respectively.Significance:The results suggest that surgical correction of femoral deformities is more likely to be effective than strength training of hip muscles in enhancing CP gait performance. Jump gait, true equinus and especially crouch were more robust, while apparent equinus and stiff knee gait were limited by hip weakness and femoral deformities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.