Abstract
Micro-arc oxidation (MAO) films on AZ31 magnesium alloy were modified by high-intensity pulsed ion beam (HIPIB) irradiation with ion energy of 300keV at 200A/cm2 with up to 10 shots. Scanning electron microscopy, X-ray diffractometry and micro-hardness testers were used to characterize the surface properties of the irradiated MAO films. The thickness of remelted layer increased and then decreased, and the maximal value of 10μm was obtained at 200A/cm2 with 5 shots. The phase structure of the ablated surface still consisted of Mg2SiO4 and MgO, which are the same as that of the original ones. Surface roughness of the ablated surface increased and then decreased with the increase of shot number. The surface roughness for the original MAO film is about 2.10μm, it decreased to 1.18μm with 1 shot irradiation and then increased to 4.13μm with irradiation shots up to 10. Correspondingly, the surface energy of the ablated surface augmented, resulting in the tedious decrease of static contact angle from 145.9° for original film to 49.7° for the film with 10 shots. The ablation modification enhanced the continuity and compaction of the MAO films on AZ31 magnesium alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.