Abstract
The effect of ultrasonication on the cell rupture of marine microalgae Nannochloropsis sp. was studied as a function of the slurry solids concentration and treatment time. The concentrated viscous wet-biomass (~12 to 25% solids concentration) was subjected to ultrasonication (20 kHz) at 3.8 W/mL for up to 5 min. Compared to extraction without cell rupture, sonication led to a significant increase in lipid yield from ~11% to about 70% within 5 min of sonication. The extraction yield was found to decrease with increased solids concentration, with a large decrease between 20% to 25% solids. This is attributed to the increase in viscosity and decrease in speed of sound with increase in solids. The ultrasound attenuation coefficient increased 320-fold as the solids increased from 20 to 25%. Such a large attenuation of ultrasound places a limit of 20% solids to be used for cell rupture by ultrasound. The specific energy requirements per unit mass of extracted lipid were lowest at 20% solids. At lower concentrations energy was wasted heating water, at higher concentrations the lipid yields were reduced due to ultrasound attenuation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.