Abstract

In people with diabetes, one of the problems for patients is muscle wasting and inhibition of the protein synthesis pathway. This study aimed to evaluate the effects of HIIT on protein expression in two skeletal muscles, flexor hallucis longus (FHL) and soleus (SOL) in rats with type 2 diabetes mellitus (T2DM). Diabetes initially was induced by streptozotocin (STZ) and nicotinamide. Rats with type 2 diabetes were randomly and equally divided into control (n = 6) and HIIT groups (n = 6). After 8 weeks of training, the content of total and phosphorylated proteins of serine/threonine-protein kinases (AKT1), mammalian target of rapamycin (mTOR), P70 ribosomal protein S6 kinase 1 (P70S6K1), and 4E (eIF4E)-binding protein 1 (4E-BP1) in FHL and SOL muscles were measured by Western blotting. While body weight and blood glucose were also controlled. In the HIIT training group, compared to the control group, a significant increase in the content of AKT1 (0.003) and mTOR (0.001) proteins was observed in the FHL muscle. Also, after 8 weeks of HIIT training, protein 4E-BP1 (0.001) was increased in SOL muscle. However, there was no significant change in other proteins in FHL and SOL muscle. In rats with type 2 diabetes appear to HIIT leading to more protein expression of fast-twitch muscles than slow-twitch muscles. thus likely HIIT exercises can be an important approach to increase protein synthesis and prevent muscle atrophy in people with type 2 diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call