Abstract

The morphological, elemental distribution and electrical performance effects of increasing the Cu(In,Ga)Se2 (CIGS) growth substrate temperature are studied. While the increased substrate growth temperature with no other modifications led to increased CIGS grain size, it also resulted in depth profile flattening of the [Ga]/([Ga]+[In]) ratio. Tuning the Ga profile in the high temperature process led to a more desirable [Ga]/([Ga]+[In]) depth profile and allowed a comparison between high and standard temperature. Devices prepared at higher temperature showed an improved grain size and the electrical performance is very similar to that of the reference sample prepared at a standard temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.