Abstract
Osteoarthritis (OA) is globally one of the most common diseases from the middle age onwards. Cartilage is an avascular tissue therefore it cannot be repaired in the body. Conservative treatments have failed as a good remedy and cell therapy as a decisive cure is needed. One of the best and easily accessible cell sources for this purpose is adipose-derived stem cells which can be differentiated into chondrocytes by tissue engineering techniques. Chemical and physical inducers have a key role in stem cell - chondrocyte differentiation. We have tried to determine the role of electric fields (EF) in promoting this kind of chondrogenesis process. Human adipose derived stem cells (ADSCs) were extracted from subcutaneous abdominal adipose tissue during cesarean section. A high frequency (60 KHz) EF (20 mv/cm), as a physical inducer for chondrogenesis in a 3D micromass culture system of ADSCs was utilized. Also, MTT, ELISA, flow cytometry, and real-time PCR techniques were used for this study. We found that using physical electric fields leads to chondrogenesis. Furthermore, results show that using both physical (EF) and chemical (TGFβ3) inducers simultaneously, has best outcomes in chondrogenesis, and expression of SOX(9) and type II collagen genes. It also causes significant decreased expression of type I and X collagen genes in pure EF group compared with control group. The EF was found as a proper effective inducer in chondrogenic differentiation of human ADSCs micromass culture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.