Abstract

The physical properties of materials are critical to their functionality, and the ability to control these properties using external forces is a significant challenge. In this study, we investigate the effect of three high frequency acoustic wave vibration patterns on the structure and morphology of MOF particles. Our results indicate that while regular vibration patterns generated by SAW can alter particle morphology, hybrid waves and Lamb waves with irregular vibration patterns can synthesise MOF crystals with multi-level pores. The vibration pattern of acoustic waves is shown to be a critical factor in controlling the particle morphology process. These results provide new insights into the precise control of crystal structure and the theory of crystallisation by particle attachment (CPA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call