Abstract

BackgroundPET-MRI is under investigation as a new strategy for quantitative myocardial perfusion imaging. Consideration is required as to the maximum scanner count rate in order to limit dead-time losses resulting from administered activity in the scanner field of view during the first pass of the radiotracer.ResultsWe performed a decaying-source experiment to investigate the high count-rate performance of a PET-MR system (Siemens mMR) over the expected range of activities during a clinical study. We also performed imaging of a cardiac perfusion phantom, which provides an experimental simulation of clinical transit of a simultaneous radiotracer (phantom injected activities range 252 to 997 MBq) and gadolinium-based contrast agent (GBCA). Time-activity and time-intensity curves of the aorta and myocardium compartments from PET and MR images were determined, and quantification of perfusion was then performed using a standard cardiac kinetic model. The decaying-source experiment showed a maximum noise equivalent count rate (NECRmax) of 286 kcps at a singles rate of 47.1 Mcps. NECR was maintained within 5% (NECR95%) of the NECRmax with a singles rate of 34.1 Mcps, corresponding to 310 MBq in the phantom. Count-rate performance was degraded above the singles rate of 64.9 Mcps due to the number of detection events impacting the quantitative accuracy of reconstructed images. A 10% bias in image activity concentration was observed between singles rates of 78.2 and 82.9 Mcps. Perfusion phantom experiments showed that image-based activity concentration and quantified values of perfusion were affected by count losses when the total singles rate was greater than 64.9 Mcps. This occurred during the peak arterial input function (AIF) phase of imaging for injected activities to the phantom of 600 MBq and greater.ConclusionsCare should be taken to avoid high count-rate losses in simultaneous PET-MRI studies. Based on our results in phantoms, bias in reconstructed images should be avoided by adhering to a singles rate lower than 64.9 Mcps on the mMR system. Quantification of perfusion values using singles rates higher than 64.9 Mcps on this system may be compromised and should be avoided.

Highlights

  • PET-MRI is under investigation as a new strategy for quantitative myocardial perfusion imaging

  • A further subtle requirement is an upper limit on the injected activity in order to limit the count-rate losses experienced by the scanner due to all of the radiotracer being present in the field of view (FoV) of the scanner during the initial phases of imaging

  • We aim to investigate the performance of a PET-MR scanner at high count rates encountered during myocardial perfusion imaging (MPI) studies using a decaying-source experiment to examine count-rate effects on quantitative accuracy, and to investigate count-rate effects on quantification of perfusion values using a cardiac perfusion phantom to experimentally simulate clinical MPI studies

Read more

Summary

Introduction

PET-MRI is under investigation as a new strategy for quantitative myocardial perfusion imaging. A further subtle requirement is an upper limit on the injected activity in order to limit the count-rate losses experienced by the scanner due to all (or a high percentage) of the radiotracer being present in the field of view (FoV) of the scanner during the initial phases of imaging (where the arterial input function—AIF—is derived). This dead-time effect may adversely influence the reconstructed images and subsequently the calculated perfusion parameters resulting from PET kinetic modeling. Reducing excessive count rates and dead-time effects can be achieved either by a limit on the activity injected as a bolus or by performing a slow infusion of the radiotracer [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.