Abstract

Based on wind tunnel data the origin and the influence of active rotor control on the wake geometry in the rotor disk are determined. The test data show that the changes in blade-vortex interaction locations due to higher harmonic control are not primarily caused by different blade motions but mainly from different vortex flight paths. Using combined momentum and blade element theory, a model for the induced velocities caused by higher harmonic control is derived. The integration of the vortex flight path within this induced velocity field provides displacements of the vortices that lead to significant changes in the blade-vortex interaction locations. The results are validated by wind tunnel data, and it is proven that the influence of higher harmonic control on vortex geometry and therewith the noise emission characteristics can be predicted using this methodology. Thus the time consuming procedure of computing the wake geometry by free-wake analysis may be omitted for parameter variation studies, since the wake geometry can be predicted approximately in advance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call