Abstract

The present paper describes the effect of Hf and Ti additions on the microstructures and mechanical properties of two-phase composites based on the Cr2Nb–Nb eutectic. The microstructures of directionally solidified in situ composites containing 50–70% by volume of the Laves phase Cr2Nb which was modified with Hf (7.5–9.2%) and Ti (16.5–26%) are described. Partitioning of Hf and Ti between the two phases is discussed using microprobe and EDS results. The tensile properties at 1100 and 1200 °C are described and compared with those of an analogous niobium silicide-based composite. The Cr2(Nb)–(Nb) composite tensile yield strengths at 1200 °C were increased over that of monolithic Cr2Nb to ∼130 MPa. However, at 1200 °C the yield strengths of the silicide-based composites were approximately twice those of the Cr2(Nb)–(Nb) composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call