Abstract

Cholestasis is characterized by the elevation of serum total bile acids (TBA), which leads to the production of both free radicals and oxidative stress. Although they do not share the same mechanisms, membrane glycosphingolipids (GSL) and the antioxidant enzyme heme oxygenase-1 (HMOX1) both act against the pro-oxidative effect of TBA. The aim of the study was to assess the role of HMOX on GSL redistribution and composition within hepatocytes in the rat model of estrogen-induced cholestasis. Compared to the controls, an increase of total gangliosides in the liver homogenates of the cholestatic group (P=0.001) was detected; further, it paralleled along with the activation of their biosynthetic b-branch pathway (P<0.01). These effects were partially prevented by HMOX activation. Cholestasis was accompanied by a redistribution of GM1 ganglioside from the cytoplasm to the sinusoids; while HMOX activation led to the retention of GM1 in the cytoplasm (P=0.014). Our study shows that estrogen-induced cholestasis is followed by changes in the synthesis and/or distribution of GSL. These changes are not only triggered by the detergent power of accumulated TBA, but also by their pro-oxidant action. Increases in the antioxidant defenses might represent an important supportive therapeutic measure for patients with cholestatic liver disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.