Abstract

Ionizing radiation, from both space and radiation therapy, is known to affect bone health. While there have been studies investigating changes in bone density and microstructure from radiation exposure, the effects of radiation on material properties are unknown. The current study addresses this gap by assessing bone material property changes in rats exposed to helium-4 radiation through spherical micro-indentation. Rats were exposed to a single dose of 0, 5, and 25cGy whole body helium-4 radiation. Animals were euthanized at 7, 30, 90, or 180-days after exposure. Spherical micro-indentation was performed on axial cross sections of the femur cortical bone to determine instantaneous and relaxed shear moduli. At 90-days after exposure, the 25cGy exposure caused a significant decline in shear modulus compared to control and 5cGy groups. The instantaneous modulus decreased 33% and the relaxed modulus decreased 32% as compared to the sham group. This decline was followed by a recovery of both moduli, which was observed by 180-days after exposure; at 180days, the moduli were no longer statistically different from those at 7 or 30days. The observed decrease at 90days, followed by recovery to baseline levels, can be attributed to the biological mechanisms involved in bone formation that were affected by radiation, bone turnover, and systemic changes in hormones due to radiation exposure. Continued assessment of the mechanisms that drive such a response in material properties may enable identification of pathways for therapeutic countermeasures against radiation exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.