Abstract

Helicobacter pylori infection has been associated with the development of insulin resistance (IR). This study aimed to examine the effect of H. pylori-derived extracellular vesicles (EVs) on IR induction. EVs were derived from two H. pylori strains, and characterised by transmission electron microscopy and dynamic light scattering. Different concentrations of insulin were added to HepG2 cells to induce IR model. HepG2 cells were exposed to various concentrations of H. pylori-derived EVs to assess IR development. The gene expression of IRS1, AKT2, GLUT2, IL-6, SOCS3, c-Jun and miR-140 was examined using RT-qPCR. Glucose uptake analysis revealed insulin at 5 × 10 -7 mol/l and EVs at 50 µg/ml induced IR model in HepG2 cells. H. pylori-derived EVs downregulated the expression level of IRS1, AKT2, and GLUT2, and upregulated IL-6, SOCS3, c-Jun, and miR-140 expression in HepG2 cells. In conclusion, our findings propose a novel mechanism by which H. pylori-derived EVs could potentially induce IR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.