Abstract

The use of microalgae in biotechnological processes has received much attention worldwide. This is primarily due to the fact that they are inexpensive to grow, requiring only sunlight and CO2, whilst lending themselves to a range of uses, such as to reduce CO2 levels, as fish feed, in biofuel production, for the generation of secondary metabolites of interest, and in bioremediation. These features mean that microalgae are excellent candidates for the implementation of a range of eco-friendly technologies. Here, we investigated the behavior and feasibility of the use of the microalgal strain Tetraselmis marina AC16-MESO against heavy metal contamination focused on potential use in bioremediation. The following key parameters were recorded: (i) the sedimentation efficiency, which reached 95.6% after five hours of decantation; (ii) the ion tolerance (Ca2+, Co2+, Cu2+, Fe3+, Mn2+ and Ni2+) at concentrations of 0.1, 1.0, 5.0, 10.0 and 20.0 mg*L−1 and (iii) ion removal efficiency (Cu2+, Fe3+ and Mn2+). Our results indicated a higher tolerance for iron and calcium (20 ± 1.10 mg*L−1; 100 ± 8.10 mg*L−1), partial to nickel, manganese and copper (4.4 ± 0.10 mg*L−1; 4.4 ± 0.15 mg*L−1; 5 ± 1.25 mg*L−1) and less for cobalt (0.1 ± 0.20 mg*L−1). Moreover, removal efficiency of 40–90% for Cu2+, 100% for Fe3+, and 20–50% for Mn2+ over a 72 hours period, for ion concentrations of 1.0 and 5.0 mg*L−1.

Highlights

  • Every day, industrial processes generate large amounts of contaminated water, which are discharged into the environment

  • In order to evaluate the potential use of Tetraselmis marina AC16-MESO in bioremediation, sedimentation efficiency was determined and subsequently compared it to that of the microalgae Muriellopsis sp. and Nannochloropsis gaditana, which are characterized by high and low sedimentation efficiencies (SE), respectively

  • The efficiency of heavy metals (HMs) removal by microalgae depends on the microalgal species, the properties and concentration of the metal ion, and the period of culture

Read more

Summary

Introduction

Industrial processes generate large amounts of contaminated water, which are discharged into the environment. Most pollution in these waters is due to heavy metals (HMs) such as copper, chromium, nickel, iron, cadmium, and arsenic (Doshi et al, 2008). Due to their non-biodegradability and hazardous characteristics, heavy metals pose a great threat to the health of the environment. It is of utmost importance to remove HMs from the industrial wastewaters released into water courses and soil (Doshi et al, 2008)

Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.