Abstract
The microstructure and creep properties of two powder metallurgy (PM) ‘beta gamma’ titanium aluminide alloys are presented. Alloy powders with nominal compositions of TiAl-4Nb-3Mn (G1) and TiAl-2Nb-2Mo (G2) were produced by gas atomization and consolidated by a two-step hot isostatic pressing (HIP) process (1250 °C/200 MPa/1 hour + 1100 °C/200 MPa/3 hours + slow cooling to room temperature). After HIP, the materials were given a step cooled heat treatment (SCHT) of 40 min at 1400 °C, furnace cooling to 1280 °C, and air cooling to room temperature. Selected specimens were aged at 900 °C for 6 or 24 hours. The SCHT yielded similar fully lamellar microstructures for both alloys, with a lamellar spacing of 0.04 m, but with different grain sizes averaging 80 m (G1) and 40 m (G2). The aging treatments generated precipitates along lamellar colony boundaries in both alloys, but along lamellar interfaces only in alloy G2. Constant load tensile creep tests were performed at 760 °C and 276 MPa. Alloy G2 exhibited superior creep performance compared to alloy G1, due to the quantity and size of precipitate particles at the lamellar interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.