Abstract

This study investigated the effects of different heat treatments on continuous fiber-reinforced thermoplastic (CFRTP) 's. CFRTP composite is produced using fused deposition modeling (FDM), which is one of the additive manufacturing methods. Polylactic acid (PLA) was used as a matrix, and carbon fibers (3K) were utilized as reinforcement material. First, CFRTP filament was produced on a specially designed melt impregnation line. Afterward, test samples were manufactured via a conventional 3D printer. Then, heat treatments (re-melting in salt, microwave oven, oven) were applied to the produced samples, and the effects of these processes on mechanical properties were investigated. Three-point bending tests were used to investigate the mechanical properties of the test samples. As a result of the heat treatments applied to the CFRTP specimens, flexural stresses between 200 and 220 MPa was achieved. The highest bending stress was obtained by re-melting in salt. As a result of the heat treatments, the stress values are similar, but the re-melting in salt application exhibited a more rigid behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.