Abstract

Magnetic iron–nickel alloys generally called permalloys are of great interest due to their magnetic properties. Fe–45%Ni alloy is one of the major iron–nickel compositions, well-known for high flux density, low coercivity and their responsiveness to the magnetic annealing. In this study, nanocrystalline Fe–45%Ni alloy powders were prepared by mechanical alloying process using a planetary high-energy ball mill under an argon atmosphere. The synthesized powders were heat treated at different temperatures using a vacuum furnace. The structural properties of the as-milled and the post-heat treated powders were studied by means of X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). The magnetic measurements on the powders were carried out using a vibrating sample magnetometer (VSM). The results showed that the lattice strain decreases and the crystallite size increases with annealing temperature. It was also found that the variation of coercivity is dominated by the removal of residual stress at low annealing temperatures, whereas the value of coercivity depends on the crystallite size at higher annealing temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.