Abstract

Cupronickel alloys, reinforced by L12 precipitates, offer a high strength, corrosion resistant and anti-bio fouling material for marine engineering applications. These alloys exhibit complex precipitate nucleation and growth mechanisms that must be fully understood in order to optimise the mechanical properties. In this work, the microstructural characteristics of the Cu-Ni-Al based alloy, Hiduron® 130, have been assessed in the as-received condition and following 100-h thermal exposures at 500, 600, 700 and 900°C and after a two-stage exposure at 900°C for 100h followed by 500°C for 100h. The L12 phase was observed to precipitate both discontinuously and continuously and its subsequent coarsening was characterised alongside measurements of the lattice misfit. The hardness of the alloy was found to decrease with increasing exposure temperature up to the L12 solvus and correlated with the evolution of the L12 precipitates, the alloy grain size and the fraction of the discontinuously formed L12 phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.