Abstract

Our quest is for the thumb and finger positions that maximize drag in front crawl swimming and thus maximize propulsion efficiency. We focus on drag in a stationary flow. Swimming is in water, but using Reynolds similarity the drag experiments are done in a wind tunnel. We measure the forces on real-life models of a forearm with hands, flexing the thumb and fingers in various positions. We study the influence on drag of cupping the hand and flexing the thumb. We find that cupping the hand is detrimental for drag. Swimming is most efficient with a flat hand. Flexing the thumb has a small effect on the drag, such that the drag is largest for the opened (abducted) thumb. Flow structures around the hand are visualized using robotic volumetric particle image velocimetry. From the time-averaged velocity fields we reconstruct the pressure distribution on the hand. These pressures are compared to the result of a direct measurement. The reached accuracy of approx 10% does not yet suffice to reproduce the small drag differences between the hand postures.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.