Abstract
Recently, the Gurney Flap (GF) has been used to improve the performance of Horizontal Axis Wind Turbine (HAWT) by enhancing its lift coefficient. Compared to HAWT, research on GF application for Vertical Axis Wind Turbine (VAWT) is very limited. Moreover, most works studied a GF geometry attached to the trailing edge of a stationary airfoil, without considering the rotating effect experienced by VAWT. For this reason, a three-straight-bladed VAWT rotating blade with GF is studied by transient RANS simulation together with a stress-blended eddy simulation (SBES) turbulence model to investigate the GF height effect and the flow characteristics near the blade trailing edge. Results have shown that by introducing the blade rotating, an optimum GF height is found to be 3% of the blade chord, slightly higher than 2% chord in a stationary airfoil case. In addition, the presence of GF can delay deep stall of VAWT blades, thus eliminating negative instantaneous moment coefficient and improving the turbine performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.