Abstract

Nephropathy is the most severe complication of diabetes mellitus. We investigated the effect of exogenous growth hormone (GH) administration on renal function and matrix deposition in the streptozotocin (STZ) model of type I-diabetic rat. Adult female STZ-diabetic rats (D), non-diabetic control rats injected with saline (C) and control and diabetic rats injected with bovine GH for 3 months (CGH and DGH, respectively) were used. The usual renal hypertrophy seen in D animals was more pronounced in the DGH group. Creatinine clearance increased only in the D rats, but not in the other groups, including DGH. Albuminuria was observed in the D animals but was significantly elevated in the DGH group. Glomeruli from DGH animals showed more extensive matrix accumulation (manifested as an increase in mesangial/glomerular area ratio). Renal extractable insulin-like growth factor (IGF-I) mRNA was decreased in the D and DGH groups, but renal IGF-I protein was not significantly increased. Renal IGF binding protein-1 was increased in the D groups and further increased in the DGH group, at both the mRNA and protein levels. GH-treated diabetic rats had less hyperfiltration and more albuminuria, concomitant with more glomerular matrix deposition, when compared with regular diabetic animals. This was associated with a significant increase in renal IGFBP-1, and dissociated from IGF-I changes. Thus, in this model, GH exacerbates the course of diabetic kidney disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.