Abstract
Background: Adipogenesis of adipocytes includes two stages: initiation and maturation. Growth hormone (GH) secretion is decreased in obese subjects and GH levels are inversely correlated with abdominal fat mass. The effects of growth hormone (GH) on lipids accumulation or maturation of adipocytes remains elusive. Methods: In the present study, effect of GH on lipid accumulation in vitro and in vivo was examined. cDNA microarray, quantitative real time-PCR (qPCR) and western blotting was used to analyze the expression of genes related to adipocyte lipid accumulation or degradation in pre- or mature 3T3-F442A adipocytes treated with GH and in epididymal adipose tissue of C57BL/6 mice administrated with GH. Level of adiponectin in supernatants of cultured F442A adipocytes was determined by enzyme-linked immune-sorbent assay. Results: We found that in 3T3-F442A especially 6 days post initiation of adipogenesis, GH intervention resulted in decreased expression of adipocyte maturation regulators (C/EBPα, PPARγ) and prominent genes related to lipid synthesis such as FAS and FABP, while the expression of UCP1 was markedly enhanced. cDNA microarray analysis and qPCR showed that the expression of SOCS2 and Adipor2 was increased under GH-treatment in mature 3T3-F442A adipocytes. GH treatment increased the mRNA expression of adiponectin and UCP1 in mature adipocytes. The above results were confirmed by in vivo study. Conclusions: GH potentially negatively modulates the maturation and accumulation of lipid in adipocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.