Abstract

The Wapiti River South Slope is located 25 km southwest of Grande Prairie, AB. The slope is 500 m long and consists of a steep lower slope and a shallower upper slope, both of which are located within a landslide complex with ground movements of varying magnitudes and depths. The Alliance Pipelines Ltd. (Alliance) NPS 42 Mainline (the pipeline) was installed in the winter of 2000 using conventional trenching techniques at an angle of approximately 8° to the slope fall line. Evidence of slope instability was observed in the slope since the first ground inspection in 2007. Review of the available geotechnical data indicates two different slide mechanisms. In the lower slope, there is a shallow translational slide within a colluvium layer that is draped over a stable bedrock formation. In the upper slope, there is a deep-seated translational slide within glaciolacustrine and glacial till deposits that are underlain by pre-glacial fluvial deposits. Both the upper and lower slope landslide mechanisms have been confirmed to be active in the past decade. Large ground displacements in the order of several meters between 2012 and 2014 in the lower slope led to a partial stress relief and subsequent slope mitigation measures in the spring and summer of 2014, which significantly reduced the rate of ground movement in the lower slope. Surveying of the pipeline before and after stress relief indicated an increase in lateral pipeline deformation (in the direction of ground movement) following the stress relief. This observation was counter-intuitive and raised questions regarding the effectiveness of partial stress relief to reduce stresses and strains associated with ground movements. Finite element analysis (FEA) was conducted in 2017 to aid in assessing the condition of the pipeline after being subject to the aforementioned activities, and subsequent ground displacement from July 2014 to December 2016. This paper presents the assumptions and results of the FEA model and discusses the effect of large ground displacement, subsequent stress relief and continued ground displacement on pipeline behaviour. The results and findings of the FEA reasonably match the observed pipeline behaviour before and after stress relief. The FEA results showed that while the lateral displacement of the pipeline that was caused by ground movement actually increased following the removal of the soil loading, the maximum pipeline strain was reduced in the excavated portion. The results also indicated that ground displacement in the upper slope following the stress relief had minimal effect on pipe stresses and strains in the lower slope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call