Abstract

Australia has great potential for shale gas development that can reshape the future of energy in the country. Hydraulic fracturing has been proven as an efficient method to improve recovery from unconventional gas reservoirs. Shale gas hydraulic fracturing is a very complex, multi-physics process, and numerical modelling to design and predict the growth of hydraulic fractures is gaining a lot of interest around the world. The initiation and propagation direction of hydraulic fractures are controlled by in-situ rock stresses, local natural fractures and larger faults. In the propagation of vertical hydraulic fractures, the fracture footprint may extend tens to hundreds of metres, over which the in-situ stresses vary due to gravity and the weight of the rock layers. Proppants, which are added to the hydraulic fracturing fluid to retain the fracture opening after depressurisation, add additional complexity to the propagation mechanics. Proppant distribution can affect the hydraulic fracture propagation by altering the hydraulic fracture fluid viscosity and by blocking the hydraulic fracture fluid flow. In this study, the effect of gravitational forces on proppant distribution and fracture footprint in vertically oriented hydraulic fractures are investigated using a robust finite element code and the results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.