Abstract
The plastic deformation behavior of cast irons, covering the majority of graphite morphologies, has not been comprehensively studied previously. In this investigation, the effect of graphite morphology and graphite fraction on the plastic deformation behavior of pearlitic cast irons has been evaluated. The investigation is based on tensile tests performed on various different cast iron grades, where the graphite morphology and volume fraction have been varied. Pearlitic steel with alloying levels corresponding to the cast irons were also studied to evaluate how the cast iron matrix behaves in tension without the effects of the graphite phase. It is concluded that as the roundness of the graphite phase increases, the strain hardening exponent decreases. This demonstrates that the amount of plastic deformation is higher in the matrix of lamellar cast iron grades compared to compacted and nodular cast iron grades. Furthermore, this study shows that the strength coefficient in flake graphite cast irons increases as the graphite fraction decreases due to the weakening effect of the graphite phase. This study presents relationships between the strain hardening exponent and the strength coefficient and the roundness and fraction of the graphite phase. Using these correlations to model the plastic part of the stress-strain curves of pearlitic cast irons, we were able to calculate curves in good agreement with experimentally determined curves, especially for gray cast irons and ductile iron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.