Abstract

AbstractViscosity shifts the flow features of a liquid and affects the consistency of a product, which is a primary factor in demonstrating forces that should be overcome when fluids are transported in pipelines or employed in lubrication. In carbon-based materials, due to their extensive use in industry, finding the simple and reliable equations that can predict the rheological behavior is essential. In this research, the rheological nature of graphene/aqueous nanofluid was examined. Fourier transform infrared spectroscopy, dynamic light scattering, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction were used for analyzing the phase and structure. Transmission electron microscopy and field emission scanning electron microscopy were also employed for micro and nano structural-study. Moreover, nanofluid stability was examinedviazeta-potential measurement. Results showed that nanofluid has non-Newtonian nature, the same as the power-law form. Further, from 25 to 50°C, at 12.23 s−1, viscosity decreased by 56.9, 54.9, and 38.5% for 1.0, 2.0, and 3.5 mg/mL nanofluids, respectively. From 25 to 50°C, at 122.3 s−1, viscosity decreased by 42.5, 42.3, and 33.3% for 1.0, 2.0, and 3.5 mg/mL nanofluids, respectively. Besides, to determine the viscosity of nanofluid in varied temperatures and mass concentrations, an artificial neural networkvia R2= 0.999 was applied. Finally, the simple and reliable equations that can predict the rheological behavior of graphene/water nanofluid are calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call