Abstract

The temperature dependence of the yield stress of polycrystalline Ta, Ta-2.47 wt pct W (Ta-2.5W), and Ta-9.80 wt pct W (Ta-10W) was measured to study the effect of grain boundaries and tungsten concentration on athermal strength components. Compression tests were performed over a temperature range from 77 to 1223 K at strain rates of 10−4 and 10−1 s−1. The test results show that the yield stress of Ta becomes independent of temperature above about 400 K, indicating an “athermal” regime. In contrast, the temperature dependence of yield stress was still significant for Ta-10W up to the maximum test temperature. An analysis of the test data using single-crystal data in conjunction with Taylor factors was performed to assess the effect of grain boundaries on the athermal component of flow stress at 600 K. The results indicated that the long-range athermal stress at the yield point due to grain boundaries is approximately 13 to 41 MPa for the study materials and decreases with an increase in tungsten concentration. These results are discussed with regard to constitutive modeling of flow stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.