Abstract

This paper investigated the effect of graft fixation sequence on knee joint biomechanics after a double-bundle ACL reconstruction. Two independently published biomechanical studies that investigated the biomechanics of double-bundle ACL reconstructions using similar robotic testing systems were compared. In each study, ten human cadaveric knees were tested under three different conditions: intact, ACL deficient, and ACL reconstructed using a double-bundle technique with the anteromedial (AM) graft fixed at 60° of flexion and the posterolateral (PL) graft fixed at full extension. In one study (Study A), the AM graft was fixed first; while in another study (Study B), the PL graft was fixed first. Knee kinematics, in situ forces of the ACL and the ACL grafts were measured under two loading conditions: an anterior tibial load of 134N and a combined tibial torques (10N·m valgus and 5N·m internal tibial torques) in both studies. When AM graft was fixed first, the in situ force of the AM graft was lower than the native AM bundle at all flexion angles. The in situ force in the PL graft, however, was higher than the native PL bundle at all flexion angles. When the PL graft was fixed first, the in situ force of the AM graft was higher than the native AM bundle, while the in situ forces of the PL graft were lower than the native PL bundle at all flexion angles. Both studies demonstrated that the double-bundle ACL reconstructions can closely restore the normal knee joint kinematics. Even though the grafts were fixed using similar initial tensions and at same flexion angles, the sequence of fixing the two grafts in a double-bundle ACL reconstruction could alter the in situ forces in the grafts and affect the knee kinematics. These data imply that in clinical application of a double-bundle ACL reconstruction, the sequence of graft fixation should be an important surgical parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.