Abstract

Cardiac fibroblasts, the noncontractile cells of the heart, contribute to myocardial maintenance through the deposition, degradation, and organization of collagen. Adding polyelectrolyte-coated gold nanorods to three-dimensional constructs composed of collagen and cardiac fibroblasts reduced contraction and altered the expression of mRNAs encoding beta-actin, alpha-smooth muscle actin, and collagen type I. These data show that nanomaterials can modulate cell-mediated matrix remodeling and suggest that the targeted delivery of nanomaterials can be applied for antifibrotic therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.