Abstract
Bioprosthetic valves are used in thousands of heart valve replacement surgeries. Existing glutaraldehyde-crosslinked bioprosthetic valves fail due to either calcification or degeneration. Glutaraldehyde crosslinking does not stabilize valvular glycosaminoglycans (GAGs). GAGs, predominantly present in the medial spongiosa layer of native heart valve cusps, play an important role in regulating physico-mechanical behavior of the native cuspal tissue during dynamic motion. The primary objective of this study was to identify the role of cuspal GAGs in valve tissue buckling. Glutaraldehyde-crosslinked cusps showed extensive buckling compared to fresh, native cusps. Removal of GAGs by treatment with GAG-degrading enzymes led to a marked increase in buckling behavior in glutaraldehyde-crosslinked cusps. We demonstrate that the retention of valvular GAGs by carbodiimide crosslinking together with chemical attachment of neomycin trisulfate (a hyaluronidase inhibitor), prior to glutaraldehyde crosslinking, reduces the extent of buckling in bioprosthetic heart valves. Furthermore, following exposure to GAG-digestive enzymes, neomycin-trisulfate-bound cusps experienced no alterations in buckling behavior. Such moderate buckling patterns mimicked that of fresh, untreated cusps subjected to similar bending curvatures. Thus, GAG stabilization may subsequently improve the durability of these bioprostheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.