Abstract
On the basis of the similarities in the structure of cartilage and intervertebral disc and on the property of glucosamine of being the building block for the construction of proteoglycan aggregates, we investigated the compound's role in the proliferation of nucleus pulposus cells under iso- and hyperosmotic conditions, the putative activation of signaling cascades, and the induction of glycosaminoglycan production. We examined the mode of action of glucosamine in nucleus pulposus cells. Glucosamine that naturally occurs in cartilage tissues has been widely used for treating osteoarthritis, but its role in nucleus pulposus cells is largely unknown. The effect of glucosamine sulfate on the viability and proliferation of nucleus pulposus cells was assessed by the microculture tetrazolium test (MTT) assay, direct cell counting, and tritiated thymidine incorporation. Changes in the expression and phosphorylation profile of selected proteins were estimated by Western analysis. Glycosaminoglycan production was measured using the Blyscan assay. We showed that glucosamine sulfate up to 1 mM did not influence the viability, proliferation rate, or novel DNA synthesis of nucleus pulposus cells in the presence or absence of elevated osmolality but induced the transient phosphorylation of p38 mitogen-activated protein kinase. The highest concentration used (10 mM) negatively affected cellular proliferation and resulted in deactivation of extracellular signal-regulated kinases and c-Jun N-terminal kinases. Interestingly, these effects resulted from an additional hyperosmotic stress provoked by glucosamine alone. Finally, we found that a long-term incubation with glucosamine leads to an increase in the glycosaminoglycan content of nucleus pulposus cells. Glucosamine sulfate was not found to reverse the high osmolality-mediated delay of proliferation in nucleus pulposus cells needed for the maintenance of the tissue's homeostasis. In addition, glycosaminoglycan synthesis stimulated by glucosamine provides a possible promising clinical role for treating disc degenerative disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.