Abstract

Both GH and insulin-like growth factor I (IGF-I) synergize with estrogen to induce normal mammary gland development. However, the nature of this synergy has not been explored. To gain insight into the mechanism of these interactions we have examined the effects of these substances on the estrogen receptor (ER). ER levels in the mammary gland cytosols from hypophysectomized and oophorectomized rats, were measured using two assay systems: a dextran-coated charcoal procedure to measure binding to radiolabeled steroid, and an immunologic assay employing a specific antibody to the receptor. In both assays, levels of ER were at or near baseline detection (approximately 1-2 ng/mg protein). Treating animals with either bovine or human GH significantly increased ER activity (P<0.001), whereas prolactin (PRL) and/or estradiol treatment had no effect. That this increase was at the level of transcription was demonstrated by reverse transcriptase/polymerase chain reaction. Following a single injection of GH (50 microgram), a substantial increase in ER mRNA was observed by 10 h, with levels returning to baseline within 24 h; a concomitant increase in ER itself was also observed at the 10 h time point. The effect of GH appeared to occur mainly in the mammary stroma, because there were no differences in GH stimulation of ER between gland-free and gland containing mammary fat pads. Furthermore, analysis of mammary gland ER by immunocytochemistry demonstrated that while ER was present in the epithelial cells of non-treated animals, only GH treated animals had ER clearly visible in both glandular and fat cells of the tissue. In contrast, treating animals with des(1-3)-IGF-I did not result in reproducible increases in ER, nor in the staining of fat cell nuclei for ER. These data demonstrate a specific GH effect on the ER in the mammary fat cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call