Abstract

ABSTRACTThe effects of Ge and Ti additions on the microstructure, hardness and oxidation behaviour of the alloys Nb–18Si–5Ge (ZF1) and Nb–24Ti–18Si–5Ge (ZF3) were studied. The as cast microstructure of the alloy ZF1 consisted of Nbss (cI2), and βNb5Si3 (tI32) with the latter being the primary phase and the two phases forming high volume fractions of Nbss + βNb5Si3 eutectic. The Ge addition stabilised the βNb5Si3 (tI32), and destabilised the Nb3Si (tP32) and the Nbss + Nb3Si eutectic. After heat treatment at 1200 °C for 100 h the βNb5Si3 (tI32) was partially transformed to the αNb5Si3 (tI32), and equilibrium was reached after heat treatment at 1500 °C for 100 h. The phases present in the as cast alloy ZF3 were the Nbss (cI2), and the Nb3Si (tP32), βNb5Si3 (tI32) and Ti5Si3 (hP16) silicides, with the latter forming a eutectic with the solid solution. The same phases were present after heat treatment at 1200 °C for 100 h but only the Nbss, and the Nb3Si and Nb5Si3 silicides were present after 100 h at 1500 °C where TiO2 was also formed. The Ge addition increased the microhardness of the Nb5Si3. The synergy of Ti with Ge resulted in a strong hardening effect and a remarkable retention of the hardness of the alloy ZF3. The additions of Ge and Ti to the Nb-18Si alloy improved the oxidation resistance at 800 °C, but pest oxidation behaviour was not eliminated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call