Abstract

When a double-strand break has a gap between the broken ends, the missing information can be restored through synthesis from a homologous template. Here we address the question of how long such a gap can be before this process fails. We measured the frequency of homologous repair in the Drosophila germ line following the creation of gaps of specific sizes ranging from 3.8 to 210 kb. We found that gaps of <or=11 kb can be repaired with approximately the same efficiency as breaks with no gap at all. However, a gap of 44 kb was repaired only rarely, and one of 210 kb was not repaired at a measurable frequency. We conclude that DNA gap repair is a length-limited process, but that this limitation is critical only for gaps>>11 kb.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.